HISTORIC MANEUVER

CYGNUS BOOSTS ALTITUDE AFTER ISS UNDOCKING FOR DEPLOYMENT OF SPIRE SATELLITES

Cygnus CRS OA-5 launches from Wallops Flight Facility in Virginia aboard an Antares rocket.

23 October 2016

Cygnus CRS OA-5 arrives at the International Space Station bringing much needed supplies to the astronauts living aboard.

Key Players

NanoRacks' deployer pushes the satellites into Space. NanoRacks is the exclusive deployer of satellites from the ISS.

Orbital ATK's Antares launch vehicle carried their Cygnus spacecraft to orbit.

NASA and its international partners are the gateway to space and the ISS. Without their involvement & support. This mission would not have been possible.

How Many?

There are **4** satellites on this deployment.

This brings Spire's active customer-data satellites to **16**.

This brings Spire's all-time launch total to **21**.

With 16, Spire now has more active ship tracking satellites than Orbcomm's OG2 constellation.

21 November 2016

Cygnus CRS OA-5 leaves the International Space Station.
Typically, the spacecraft would start its descent to burn up.
Instead, the spacecraft boosts its altitude and heads for an orbit different from the ISS.

25 November 2016

Spire's four Lemur-2 satellites are pushed into space via the NanoRacks External Deployer attached to the Cygnus spacecraft.

Why Boost Altitude?

The International Space Station has an altitude of 400km. Because of it's low altitude, satellites deployed from the ISS can expect to last about 9 months under typical conditions.

By raising to 500km, Spire expects these Lemur-2 satellites to last about 2 years.

Cygnus CRS OA-5 begins the de-orbit process where it falls back to Earth and burns up in the atmosphere.

25 November 2016

